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Abstract In this study, Benchmark solutions are derived for the problem of two-dimensional
laminar flow of air in a square cavity which is heated on the left, cooled on the right and insulated
on the top and bottom boundaries. The temperature differences between the hot and cold walls are
large. Neither Boussinesq nor low-Mach number approximations of the Navier-Stokes equations
are used. The ideal-gas law is used and the viscosity is given by Sutherland’s law. A constant
Prandtl number is assumed. The computational method is completely described by Vierendeels et al.
Grid converged results with an accuracy of 4 up to 5 digits are obtained for different Rayleigh
numbers and temperature differences.

1. Definition of the problem
Flow of a compressible fluid is considered in a differentially heated square
cavity in which large temperature differences are applied to the vertical walls
while the horizontal walls are thermally insulated (Figure 1). This problem has
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Notations
Cp ¼ specific heat capacity at constant

pressure
g ¼ gravitational constant
k ¼ thermal conductivity
L ¼ dimension of the cavity
Ma ¼ Mach number
m ¼ mass content in the cavity
Nu ¼ Nusselt number
P ¼ pressure
Pr ¼ Prandtl number
R ¼ specific gas constant
Ra ¼ Rayleigh number
S ¼ area of the cavity, temperature used

in the Sutherland’s law
T ¼ temperature

u ¼ velocity component in the
x-direction

v ¼ vecocity component in the
y-direction

1 ¼ non-dimensional temperature
difference

g ¼ ratio of the specific heat capacities
m ¼ dynamic viscosity
C ¼ dimensionless stream function
r ¼ density

Subscript
c ¼ cold
h ¼ hot
0 ¼ reference
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been studied by Chenoweth and Paolucci (1986) and Leonardi and Reizes
(1981), but no benchmarking data are available from those studies.

The parameters defining the problem are: the dimension of the cavity L, the
fluid properties R;mðm* ; S;T* Þ; k;Cp and the specific buoyancy force gDr=r:
In contrast to the flows where the Boussinesq approximation is valid, the
relative density variation also has a direct influence on the flowfield: it causes
the divergence of the velocity field not to be zero anymore. With the use of ideal
gas law, Dr=r is defined by DT=T and DP=P; so temperature and pressure
differences and temperature and pressure levels become important parameters.
The temperature difference and temperature level can be specified by the
temperatures of the vertical walls, Th and Tc. The pressure difference cannot be
specified, but it is a solution of the problem, so this is not an independant
parameter. The pressure level, however, is specified by the initial mass in the
cavity m, the ideal gas law and the already specified temperature level and
dimension of the cavity. The rank of the dimensional matrix is four, so there are
seven dimensionless groups:

. The Prandtl number, Pr ¼ mCp=k:

. The Rayleigh number, representing the driving force, defined for a
compressible fluid as:

Ra ¼ Pr
gr2

0ðTh 2 TcÞL
3

T0m
2
0

;

where T0 is the reference temperature equal to ðTh þ TcÞ=2; r0 is the
reference density corresponding to the initial mass in the cavity m and m0

is the reference dynamic viscosity, evaluated at T0.

Figure 1.
Geometry, initial and
boundary conditions for
the thermally driven
cavity problem
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. The temperature difference may be represented by a non-dimensional
parameter:

1 ¼
Th 2 Tc

2T0
: ð1Þ

This parameter being part of the Rayleigh number has for
non-Boussinesq flows its own significance: it represents the
non-buoyancy influence of the temperature field on the flowfield. For
small temperature differences 1 reaches zero, which corresponds to the
Boussinesq solution.

. Maref and g : These parameters describe the influence on the flowfield due
to density changes from compressibility effects. Maref is defined as
vref=c0; with vref a reference velocity and c0, the speed of sound
corresponding to T0. An appropriate reference velocity vref can be derived
from the Boussinesq solution for the natural convective heat transfer
problem along a vertical wall: vref ¼ f ðPrÞRa0:5mðT0Þ=ðr0LÞ (White, 1974).
Since in this paper only the solution for air is considered, the function
f (Pr) can be neglected, so the reference velocity becomes vref ¼
Ra0:5mðT0Þ=ðr0LÞ: Since the reference Mach number is very small, both
Maref and g have a negligible influence on the solution, but since the
results are computed up to five digits, there may be an impact on the last
digits. The Maref number can be derived for each test case considered in
this paper.

. S=T* and T0=T* ; defining the non-dimensional Sutherland’s law.

The heat transfer through the wall is represented by local and average Nusselt
numbers Nu and Nu:

NuðyÞ ¼
L

k0ðTh 2 TcÞ
k
›T

›x

����
wall

;

Nu ¼
1

L

Z y¼L

y¼0

NuðyÞ dy;

where k ¼ kðTÞ and k0 ¼ kðT0Þ: In the test cases considered here, the Prandtl
number is assumed to remain constant, equal to 0.71, and the dynamic
viscosity is given by Sutherland’s law:

mðTÞ

m*
¼

T

T*

� �3=2
T* þ S

T þ S
; kðTÞ ¼

mðTÞCp

Pr
;

with T* ¼ 273 K; S ¼ 110:5 K; m* ¼ 1:68 £ 1025 kg=m=s; Cp ¼ gR=ðg2 1Þ;
g ¼ 1:4 and R ¼ 287:0 J=kg=K: The influence of the temperature on Cp is
neglected.
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The problem is completely defined by the Rayleigh number, the value of 1,
a reference state: P0 ¼ 101; 325 Pa; T0 ¼ 600 K; r0 ¼ P0=ðR T0Þ; the earlier
mentioned fluid properties, dimension of the cavity L ¼ 1 m and the initial mass
content in the cavity, defined by r0. During the computation, the mean pressure
level is adjusted in order to keep the mass content constant.

2. Results
In the present study, six Rayleigh numbers, Ra ¼ 102-107 are considered with a
temperature difference parameter 1 ¼ 0:6: For the Ra ¼ 106 case, calculations
with 1 ¼ 0:01; 0:2; 0:4 and 0.6 are performed. Results are computed on a 1024 £
1024 stretched grid, of which the maximum aspect ratio is 80. Streamline
patterns and temperature distributions are shown in Figures 2-4. Nusselt
numbers and mean pressure values for the different Rayleigh numbers and 1
are given in Tables I and II. The mean pressure is defined by

�p ¼
1

S

Z
S

p dS;

where S is the area of the cavity.
In Vierendeels et al. (2001), it was shown with the use of a 384 £ 384;

512 £ 512; 768 £ 748 and 1024 £ 1024 grid that quadratic grid convergence is
obtained, that very good accuracy is obtained and that the computed results are
correct up to four or five digits. It was also shown that the convergence
behaviour is not influenced by the number of grid cells and grid aspect ratio.

Figure 2.
Streamline patterns and
temperature contours,
1 ¼ 0.6, Ra ¼ 102-104

HFF
13,8

1060



Figure 3.
Streamline patterns and

temperature contours,
1 ¼ 0.6, Ra ¼ 105-107

Figure 4.
Streamline patterns and

temperature contours,
Ra ¼ 106, 1¼ 0.01,

0.2, 0.4
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Nusselt number, velocity, temperature and reduced pressure, preduced, profiles at
the walls and in the midplane are shown in Figures 5-13. Temperatures are made
dimensionless by T0, pressure by r0v

2
ref: The reduced pressure is given by:

preduced ¼ p 2 �p þ r0gðy 2 L=2Þ:

Table III show computed values for different dimensionless parameters: the
maximum and minimum Nusselt number and the Nusselt number at y ¼ 0:5 are
computed at left, mid and right position, the mean pressure, maximum Mach
number, minimum and maximum velocity components at the mid planes,
minimum and maximum divergence of the velocity and the stream function at
the center and local minima and maxima of the stream function. The minima and
maxima are computed using the quadratic reconstruction, because their
positions do not necessarily coincide with the gridpoints.

3. Discussion
For 1 ¼ 0:6; there is a strong increase of the Nusselt number with the Rayleigh
number. For the Ra ¼ 106 case, there is a minor decrease of the Nusselt number
with increasing 1 values. For Ra ¼ 106 and 1 ¼ 0:01; the Nusselt number
corresponds with the calculation with Boussinesq approximation of Le Quéré
(1991). The flowfield in this case is almost symmetrical, tending to the
symmetrical Boussinesq solution. With increasing 1, the solution becomes
more asymmetrical. The thickness of the boundary layers is hereby very
slightly increasing corresponding to the very small decrease in Nusselt
number. For a given 1 ¼ 0:6; however, there is a strong decrease in boundary
layer thickness with increasing Rayleigh number, corresponding to the strong
increase in Nusselt number. For the lowest Rayleigh numbers, the boundary

Ra Nu p̄/P0

1E2 0.9787 0.95736
1E3 1.1077 0.93805
1E4 2.218 0.91463
1E5 4.480 0.92196
1E6 8.687 0.92449
1E7 16.241 0.92263

Table I.
Nusselt number and
mean pressure for
different Rayleigh
numbers, and 1 ¼ 0.6

1 Nu �p=P0

0.01 8.825 0.999998015
0.2 8.811 0.992009
0.4 8.768 0.96745
0.6 8.687 0.92449

Table II.
Nusselt number and
mean pressure for
different values of 1,
Ra ¼ 106
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Figure 5.
Nusselt number profile in

the vertical mid plane
and velocity,

temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 102,

and 1¼ 0.6
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Figure 6.
Nusselt number profile in
the vertical mid plane
and velocity,
temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 103,
and 1¼ 0.6
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Figure 7.
Nusselt number profile in

the vertical mid plane
and velocity,

temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 104,

and 1¼ 0.6
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Figure 8.
Nusselt number profile in
the vertical mid plane
and velocity,
temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 105,
and 1¼ 0.6
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Figure 9.
Nusselt number profile in

the vertical mid plane
and velocity,

temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 106,

and 1¼ 0.6

Benchmark
solutions

1067



Figure 10.
Nusselt number profile in
the vertical mid plane
and velocity,
temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 107,
and 1¼ 0.6
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Figure 11.
Nusselt number profile in

the vertical mid plane
and velocity,

temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 106,

and 1¼ 0.01
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Figure 12.
Nusselt number profile in
the vertical mid plane
and velocity,
temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 106,
and 1¼ 0.2
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Figure 13.
Nusselt number profile in

the vertical mid plane
and velocity,

temperature and reduced
pressure profiles in both
the mid planes, Ra ¼ 106,

and 1¼ 0.4
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Variable Value Position

Computed values for Ra ¼ 102 and 1¼ 0.6
Right

Numax 1.0509 (0.9101)
Numin 0.9034 (0.0755)
Numid 0.9804 (0.5)
Nu 0.9787 –

Left
Numax 1.0093 (0)
Numin 0.9481 (1)
Numid 0.9786 (0.5)
Nu 0.9787 –

Mid
Numax 1.2683 (0.8026)
Numin 0.6831 (0.1911)
Nu 0.9787 –
Nuconv 0.0024 –
Nuvisc 0.9763 –

p̄/P0 0.95736 –
Mamax 8.816£ 1028 (0.9145, 0.4940)
vmax (y¼ 0.5) 0.05347 (0.3367)
vmin (y¼ 0.5) 20.06555 (0.9029)
umax (x¼ 0.5) 0.05473 (0.8043)
umin (x¼ 0.5) 20.05509 (0.1890)
ð2~v=r ·7rÞmax 0.08465 (0.7351, 0.1614)
ð7 · ~vÞmax 0.08466 (0.7351, 0.1614)
ð2~v=r7rÞmin 20.08259 (0.7583, 0.8329)
ð7 · ~vÞmin 20.08260 (0.7583, 0.8329)

Cmid 0.01515 (0.5, 0.5)
Cmax1

0.01950 (0.6885, 0.4914)

Computed values for Ra¼ 10 3 and 1¼ 0.6
Right

Numax 1.6073 (0.8664)
Numin 0.4192 (0)
Numid 1.2019 (0.5)
Nu 1.1077 –

Left
Numax 1.4099 (0)
Numin 0.8052 (1)
Numid 1.1039 (0.5)
Nu 1.1077 –

Mid
Numax 3.602 (0.7800)
Numin 21.863 (0.1644)
Nu 1.1077 –

(continued )

Table III.
Computed values for
dimensionless
parameters
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Variable Value Position

Nuconv 0.2142 –
Nuvisc 0.8936 –

p̄/P0 0.93805 –
Mamax 8.078£ 1027 (0.9146, 0.4563)
vmax ( y¼ 0.5) 0.1597 (0.3052)
vmin ( y¼ 0.5) 20.1926 (0.9036)
umax (x¼ 0.5) 0.1599 (0.7801)
umin (x¼ 0.5) 20.1649 (0.1618)
ð2~v=r ·7rÞmax 0.2640 (0.5837, 0.1539)
ð7 · ~vÞmax 0.2640 (0.5838, 0.1539)
ð2~v=r7rÞmin 20.2220 (0.8145, 0.8052)
ð7 · ~vÞmin 20.2220 (0.8145, 0.8052)

Cmid 0.04522 (0.5, 0.5)
Cmax1

0.05713 (0.6739, 0.4311)

Computed values for Ra¼ 104 and 1¼ 0.6
Right

Numax 3.282 (0.8497)
Numin 0.350 (0)
Numid 2.506 (0.5)
Nu 2.218 –

Left
Numax 3.623 (0.1119)
Numin 0.758 (1)
Numid 2.202 (0.5)
Nu 2.218 –

Mid
Numax 13.144 (0.7848)
Numin 210.460 (0.1460)
Nu 2.218 –
Nuconv 2.056 –
Nuvisc 0.162 –

p̄/P0 0.91463 –
Mamax 3.620£ 1026 (0.9365, 0.4211)
vmax (y¼ 0.5) 0.2688 (0.1666)
vmin (y¼ 0.5) 20.2863 (0.9270)
umax (x¼ 0.5) 0.2363 (0.7821)
umin (x¼ 0.5) 20.1948 (0.1444)
ð2~v=r ·7rÞmax 0.3945 (0.2080, 0.1396)
ð7 · ~vÞmax 0.3945 (0.2080, 0.1397)
ð2~v=r7rÞmin 20.3001 (0.8938, 0.8363)
ð7 · ~vÞmin 20.3001 (0.8938, 0.8364)

Cmid 0.06472 (0.5, 0.5)
Cmax1

0.07060 (0.6229, 0.4013)

(continued ) Table III.
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Variable Value Position

Computed values for Ra¼ 105 and 1¼ 0.6
Right

Numax 6.933 (0.9314)
Numin 0.515 (0)
Numid 4.740 (0.5)
Nu 4.480 –

Left
Numax 8.641 (0.0754)
Numin 0.848 (1)
Numid 4.203 (0.5)
Nu 4.480 –

Mid
Numax 33.65 (0.8375)
Numin 219.10 (0.1394)
Nu 4.480 –
Nuconv 4.474 –
Nuvisc 0.006 –

p̄/P0 0.92196 –
Mamax 1.174£ 1025 (0.9632, 0.3644)
vmax ( y¼ 0.5) 0.3166 (0.0948)
vmin ( y¼ 0.5) 20.2939 (0.9578)
umax (x¼ 0.5) 0.1946 (0.8364)
umin (x¼ 0.5) 20.1111 (0.1394)
ð2~v=r ·7rÞmax 0.6239 (0.0874, 0.0686)
ð7 · ~vÞmax 0.6238 (0.0874, 0.0686)
ð2~v=r7rÞmin 20.4012 (0.9558, 0.9497)
ð7 · ~vÞmin 20.4012 (0.9558, 0.9497)

Cmid 0.04092 (0.5, 0.5)
Cmax1

0.04232 (0.3481, 0.5151)
Cmax2

0.04135 (0.7846, 0.3349)

Computed values for Ra¼ 106 and 1¼ 0.6
Right

Numax 15.519 (0.9676)
Numin 0.758 (0)
Numid 8.637 (0.5)
Nu 8.687 –

Left
Numax 20.270 (0.0365)
Numin 1.067 (1)
Numid 7.459 (0.5)
Nu 8.687 –

Mid
Numax 65.23 (0.8544)
Numin 243.56 (0.0905)

(continued )Table III.
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Variable Value Position

Nu 8.687 –
Nuconv 8.690 –
Nuvisc 20.004 –

p̄/P0 0.92449 –
Mamax 3.720£ 1025 (0.9792, 0.3787)
vmax ( y¼ 0.5) 0.3203 (0.0537)
vmin ( y¼ 0.5) 20.3001 (0.9756)
umax (x¼ 0.5) 0.1193 (0.8541)
umin (x¼ 0.5) 20.07972 (0.0905)
ð2~v=r ·7rÞmax 1.0394 (0.0384, 0.0303)
ð7 · ~vÞmax 1.0393 (0.0384, 0.0303)
ð2~v=r7rÞmin 20.6086 (0.9794, 0.9762)
ð7 · ~vÞmin 20.6086 (0.9794, 0.9762)

Cmid 0.02209 (0.5, 0.5)
Cmax1

0.02351 (0.8688, 0.3926)
Cmax2

0.02312 (0.2081, 0.6477)
Cmax3

0.02126 (0.8880, 0.1458)

Computed values for Ra¼ 107 and 1¼ 0.6
Right

Numax 34.269 (0.9848)
Numin 1.089 (0)
Numid 15.512 (0.5)
Nu 16.240 –

Left
Numax 46.379 (0.0164)
Numin 1.454 (1)
Numid 13.188 (0.5)
Nu 16.241 –

Mid
Numax 129.35 (0.8260)
Numin 288.43 (0.0693)
Nu 16.241 –
Nuconv 16.205 –
Nuvisc 0.036 –

p̄/P0 0.92263 –
Mamax 1.175£ 1024 (0.9883, 0.3754)
vmax ( y¼ 0.5) 0.3229 (0.0305)
vmin ( y¼ 0.5) 20.3011 (0.9861)
umax (x¼ 0.5) 0.07490 (0.8260)
umin (x¼ 0.5) 20.05124 (0.0693)
ð2~v=r ·7rÞmax 1.7061 (0.0172, 0.0134)
ð7 · ~vÞmax 1.7058 (0.0172, 0.0134)
ð2~v=r7rÞmin 20.9051 (0.9903, 0.9888)
ð7 · ~vÞmin 20.9052 (0.9903, 0.9888)

(continued ) Table III.
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Variable Value Position

Cmid 0.01265 (0.5, 0.5)
Cmax1

0.01315 (0.0989, 0.5016)
Cmax2

0.01211 (0.1639, 0.8211)
Cmax3

0.01282 (0.2798, 0.4556)
Cmax4

20.00013 (0.8009, 0.0419)
Cmax5

0.01288 (0.8040, 0.4301)
Cmax6

0.00922 (0.8807, 0.1765)
Cmax7

0.01104 (0.9207, 0.0793)
Cmax8

0.01324 (0.9256, 0.3909)

Computed values for Ra¼ 106 and 1¼ 0.01
Right

Numax 17.501 (0.9608)
Numin 0.977 (0)
Numid 8.389 (0.5)
Nu 8.825 –

Left
Numax 17.571 (0.0392)
Numin 0.982 (1)
Numid 8.370 (0.5)
Nu 8.825 –

Mid
Numax 3251 (0.8499)
Numin 23232 (0.1500)
Nu 8.825 –
Nuconv 8.773 –
Nuvisc 0.052 –

p̄/P0 0.99998015 –
Mamax 3.189£ 1025 (0.9635, 0.5286)
vmax ( y¼ 0.5) 0.3108 (0.0380)
vmin ( y¼ 0.5) 20.3105 (0.9625)
umax (x¼ 0.5) 0.09158 (0.8499)
umin (x¼ 0.5) 20.09106 (0.1500)
ð2~v=r ·7rÞmax 0.01123 (0.0325, 0.0315)
ð7 · ~vÞmax 0.01112 (0.0324, 0.0319)
ð2~v=r7rÞmin 20.01114 (0.9678, 0.9686)
ð7 · ~vÞmin 20.01124 (0.9677, 0.9690)

Cmid 0.02308 (0.5, 0.5)
Cmax1

0.02367 (0.1507, 0.5461)
Cmax2

0.02308 (0.5122, 0.5003)
Cmax3

0.02368 (0.8499, 0.4527)

Computed values for Ra¼ 106 and 1¼ 0.2
Right

Numax 16.864 (0.9619)
Numin 0.927 (0)

(continued )Table III.
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Variable Value Position

Numid 8.536 (0.5)
Nu 8.811 –

Left
Numax 18.280 (0.0394)
Numin 1.019 (1)
Numid 8.154 (0.5)
Nu 8.811 –

Mid
Numax 172.10 (0.8504)
Numin 2152.99 (0.1439)
Nu 8.811 –
Nuconv 8.766 –
Nuvisc 0.045 –

p̄/P0 0.992009 –
Mamax 3.284£ 1025 (0.9679, 0.4874)
vmax ( y¼ 0.5) 0.3138 (0.04246)
vmin ( y¼ 0.5) 20.3074 (0.9667)
umax (x¼ 0.5) 0.09773 (0.8504)
umin (x¼ 0.5) 20.08694 (0.1440)
ð2~v=r ·7rÞmax 0.2469 (0.0349, 0.0320)
ð7 · ~vÞmax 0.2468 (0.0349, 0.0320)
ð2~v=r7rÞmin 20.2096 (0.9708, 0.9700)
ð7 · ~vÞmin 20.2097 (0.9708, 0.9700)

Cmid 0.02295 (0.5, 0.5)
Cmax1

0.02354 (0.1570, 0.5365)
Cmax2

0.02308 (0.6366, 0.4902)
Cmax3

0.02373 (0.8555, 0.4385)

Computed values for Ra¼ 106 and 1¼ 0.4
Right

Numax 16.208 (0.9642)
Numin 0.857 (0)
Numid 8.627 (0.5)
Nu 8.768 –

Left
Numax 19.166 (0.0385)
Numin 1.048 (1)
Numid 7.851 (0.5)
Nu 8.768 –

Mid
Numax 91.84 (0.8526)
Numin 271.35 (0.1248)
Nu 8.768 –
Nuconv 8.743 –
Nuvisc 0.025 –

(continued ) Table III.
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layer fills the whole domain. For higher Rayleigh number separate boundary
layers on the hot and cold wall can be detected. For low Rayleigh numbers the
stream function shows only one local maximum. For higher Rayleigh numbers
more local maxima are present. The accurate positions of these maxima can be
found in the tables. For the Ra ¼ 107; 1 ¼ 0:6 case, even a minimum can be
found, corresponding to a counterrotating vortex.

Additional physical discussions on the flow phenomena can be found in
Chenoweth and Paolucci (1986) and Leonardi and Reizes (1981), but are not the
attemption of this benchmark paper.

4. Conclusion
Benchmark solutions for different Ra-numbers and temperature differences 1
for the square cavity problem with large temperature differences between the
vertical planes are presented with an accuracy of four up to five digits.
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Variable Value Position

p̄/P0 0.96745 –
Mamax 3.450£ 1025 (0.9731, 0.4387)
vmax ( y¼ 0.5) 0.3170 (0.0477)
vmin ( y¼ 0.5) 20.3040 (0.9711)
umax (x¼ 0.5) 0.1070 (0.8525)
umin (x¼ 0.5) 20.08322 (0.1248)
ð2~v=r ·7rÞmax 0.5690 (0.0370, 0.0316)
ð7 · ~vÞmax 0.5689 (0.0370, 0.0316)
ð2~v=r7rÞmin 20.4054 (0.9746, 0.9724)
ð7 · ~vÞmin 20.4055 (0.9746, 0.9724)

Cmid 0.02261 (0.5, 0.5)
Cmax1

0.02335 (0.1658, 0.5319)
Cmax2

0.02320 (0.1888, 0.6669)
Cmax3

0.02320 (0.1878, 0.6637)
Cmax4

0.02369 (0.8616, 0.4187)
Cmax5

0.02201 (0.8691, 0.1855)Table III.
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