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transfer problem in a square
cavity with large horizontal
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Abstract In this study, Benchmark solutions are derived for the problem of two-dimensional
laminar flow of air in a square cavity which is heated on the left, cooled on the right and insulated
on the top and bottom boundaries. The temperature differences between the hot and cold walls are
large. Neither Boussinesq nor low-Mach number approximations of the Navier-Stokes equations
are used. The ideal-gas law is used and the viscosity is given by Sutherland’s law. A constant
Prandtl number is assumed. The computational method is completely described by Vierendeels et al.
Grid converged results with an accuracy of 4 up to 5 digits are obtained for different Rayleigh
numbers and temperature differences.

Notations

(0N = gpecific heat capacity at constant u = velocity component in the
pressure x-direction

g = gravitational constant v = vecocity component in the

k = thermal conductivity y-direction

L = dimension of the cavity & = non-dimensional temperature

Ma = Mach number difference

m = mass content in the cavity v = ratio of the specific heat capacities
Nu = Nusselt number " = dynamic viscosity
P = pressure v = dimensionless stream function
Pr = Prandtl number p = density
R = specific gas constant .
Ra = Rayleigh number Subscript
S = area of the cavity, temperature used € = cold
in the Sutherland’s law h = hot
T = temperature 0 = reference

1. Definition of the problem

Flow of a compressible fluid is considered in a differentially heated square
cavity in which large temperature differences are applied to the vertical walls
while the horizontal walls are thermally insulated (Figure 1). This problem has
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Figure 1.

Geometry, initial and
boundary conditions for
the thermally driven
cavity problem

adiabatic wall

To, Po

A
\ 4

adiabatic wall

been studied by Chenoweth and Paolucci (1986) and Leonardi and Reizes
(1981), but no benchmarking data are available from those studies.

The parameters defining the problem are: the dimension of the cavity L, the
fluid properties R, w(uw*, S, T*), k, C,, and the specific buoyancy force gAp/p.
In contrast to the flows where the Boussinesq approximation is valid, the
relative density variation also has a direct influence on the flowfield: it causes
the divergence of the velocity field not to be zero anymore. With the use of ideal
gas law, Ap/p is defined by AT /T and AP/P, so temperature and pressure
differences and temperature and pressure levels become important parameters.
The temperature difference and temperature level can be specified by the
temperatures of the vertical walls, 73, and 7. The pressure difference cannot be
specified, but it is a solution of the problem, so this is not an independant
parameter. The pressure level, however, is specified by the initial mass in the
cavity m, the ideal gas law and the already specified temperature level and
dimension of the cavity. The rank of the dimensional matrix is four, so there are
seven dimensionless groups:

+ The Prandtl number, Pr = uC, /k.

« The Rayleigh number, representing the driving force, defined for a
compressible fluid as:

gpi(Th — TL®

Ra=Pr
Toud

)

where T is the reference temperature equal to (7}, + 7)/2, po is the
reference density corresponding to the initial mass in the cavity m and uo
1s the reference dynamic viscosity, evaluated at 7.



« The temperature difference may be represented by a non-dimensional
parameter:

_Th_Tc
2T,

This parameter being part of the Rayleigh number has for
non-Boussinesq flows its own significance: it represents the
non-buoyancy influence of the temperature field on the flowfield. For
small temperature differences e reaches zero, which corresponds to the
Boussinesq solution.

+ Ma,.and +y: These parameters describe the influence on the flowfield due
to density changes from compressibility effects. Ma,.; 1s defined as
Uref/Co, With vs a reference velocity and ¢y, the speed of sound
corresponding to 7. An appropriate reference velocity v, can be derived
from the Boussinesq solution for the natural convective heat transfer
problem along a vertical wall: vt = f (Pr)Ra05 (To)/(poL) (White, 1974).
Since in this paper only the solution for air is considered, the function
f(Pr) can be neglected, so the reference velocity becomes Vref =
Ra® w(To)/(poL). Since the reference Mach number is very small, both
Ma,s and +y have a negligible influence on the solution, but since the
results are computed up to five digits, there may be an impact on the last
digits. The Ma,.; number can be derived for each test case considered in
this paper.

« S/T* and Ty/T*, defining the non-dimensional Sutherland’s law.

D

The heat transfer through the wall is represented by local and average Nusselt
numbers Nu and Nu:

L oT
Nu) = ko(Th — c)k 0x wan
1 =L
Nu=- Nu(y) dy,
L/

where k= k(T) and ky = k(Ty). In the test cases considered here, the Prandtl
number is assumed to remain constant, equal to 0.71, and the dynamic
viscosity is given by Sutherland’s law:

3/2
WD) _(TNPT2 S 0w,
W T T+S Pr

with 7% = 273K, S = 110.5K, pu* = 1.68x10°kg/m/s, C, = yR/(y — 1),
v=14 and R = 287.0]/kg/K. The influence of the temperature on C, is
neglected.
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Figure 2.

Streamline patterns and
temperature contours,

& = 0.6, Ra = 10%10*

The problem is completely defined by the Rayleigh number, the value of &,
a reference state: Py = 101,325Pa, Ty = 600K, py = Py/(R T), the earlier
mentioned fluid properties, dimension of the cavity L. = 1 m and the initial mass
content in the cavity, defined by po. During the computation, the mean pressure
level is adjusted in order to keep the mass content constant.

2. Results

In the present study, six Rayleigh numbers, Ra = 10?-107 are considered with a
temperature difference parameter & = 0.6. For the Ra = 10° case, calculations
with e = 0.01,0.2,0.4 and 0.6 are performed. Results are computed on a 1024 X
1024 stretched grid, of which the maximum aspect ratio is 80. Streamline
patterns and temperature distributions are shown in Figures 2-4. Nusselt
numbers and mean pressure values for the different Rayleigh numbers and &
are given in Tables I and II. The mean pressure is defined by

-1
p=g [ s,

where S is the area of the cavity.

In Vierendeels et al. (2001), it was shown with the use of a 384 X 384,
512 x 512, 768 x 748 and 1024 x 1024 grid that quadratic grid convergence is
obtained, that very good accuracy is obtained and that the computed results are
correct up to four or five digits. It was also shown that the convergence
behaviour is not influenced by the number of grid cells and grid aspect ratio.
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Figure 3.

Streamline patterns and
temperature contours,

e = 0.6, Ra = 10°-10"

Figure 4.

Streamline patterns and
temperature contours,
Ra = 10% £ = 0.01,
02,04
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Table 1.

Nusselt number and
mean pressure for
different Rayleigh
numbers, and € = 0.6

Nusselt number, velocity, temperature and reduced pressure, P equced, Profiles at
the walls and in the midplane are shown in Figures 5-13. Temperatures are made

dimensionless by T, pressure by povfef. The reduced pressure is given by:

Dreduced =D — j_) + pogy — L/2)

Table III show computed values for different dimensionless parameters: the
maximum and minimum Nusselt number and the Nusselt number aty = 0.5 are
computed at left, mid and right position, the mean pressure, maximum Mach
number, minimum and maximum velocity components at the mid planes,
minimum and maximum divergence of the velocity and the stream function at
the center and local minima and maxima of the stream function. The minima and
maxima are computed using the quadratic reconstruction, because their
positions do not necessarily coincide with the gridpoints.

3. Discussion

For & = 0.6, there is a strong increase of the Nusselt number with the Rayleigh
number. For the Ra = 10° case, there is a minor decrease of the Nusselt number
with increasing e values. For Ra = 10% and & = 0.01, the Nusselt number
corresponds with the calculation with Boussinesq approximation of Le Quéré
(1991). The flowfield in this case is almost symmetrical, tending to the
symmetrical Boussinesq solution. With increasing e, the solution becomes
more asymmetrical. The thickness of the boundary layers is hereby very
slightly increasing corresponding to the very small decrease in Nusselt
number. For a given & = 0.6, however, there is a strong decrease in boundary
layer thickness with increasing Rayleigh number, corresponding to the strong
increase in Nusselt number. For the lowest Rayleigh numbers, the boundary

Ra m 5/P0

1E2 0.9787 0.95736
1E3 1.1077 0.93805
1E4 2.218 0.91463
1E5 4.480 0.92196
1E6 8.687 0.92449
1E7 16.241 0.92263

Table II.
Nusselt number and
mean pressure for

different values of &,
Ra = 10°

& Nu b/Po

0.01 8.825 0.999998015
0.2 8.811 0.992009
0.4 8.768 0.96745

0.6 8.687 0.92449
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Table III.

Computed values for

dimensionless
parameters

Variable Value Position
Computed values for Ra = 10° and e = 0.6
Right

Nuypax 1.0509 (0.9101)

Nupin 0.9034 (0.0755)

Nuyig 0.9804 (0.5

Nu 09787 -
Left

Nuyax 1.0093 )

Numin 0.9481 1)

Nt 0.9786 0.5

Nu 0.9787 -
Mid

Nuax 1.2683 (0.8026)

Nupin 0.6831 (0.1911)

Nu 0.9787 -

Nucony 0.0024

Nugise 0.9763 -
pIP, 0.95736 -
Maax 8816%x 108 (0.9145, 0.4940)
Vmax V= 0.5) 0.05347 (0.3367)
Vmin (0 = 0.5) —0.06555 (0.9029)
Upmax (6= 0.5) 0.05473 (0.8043)
Upmin (x=0.5) —0.05509 (0.1890)
(=0/p" VP)max 0.08465 (0.7351, 0.1614)
(VD) max 0.08466 (0.7351, 0.1614)
(=9/pVP)min —0.08259 (0.7583, 0.8329)
(VD) in —0.08260 (0.7583, 0.8329)
Woid 0.01515 0.5, 0.5)

max, 0.01950 (0.6885, 0.4914)
Computed values for Ra= 10° and e = 0.6
Right

Nujpax 1.6073 (0.8664)

Nupin 0.4192 )

Nuyig 1.2019 (0.5

Nu 1.1077 -
Left

Nuypax 1.4099 )

Nuin 0.8052 )

Nt 1.1039 0.5

Nu 1.1077 -
Mid

NUax 3.602 (0.7800)

Nupin —1.863 (0.1644)

Nu 1.1077 -

(continued)




Variable Value Position

Ntcony 0.2142 -

Nuyise 0.8936 -
PP, 0.93805 -
Ma.x 8.078x 1077 (0.9146, 0.4563)
Vmax (¥=0.5) 0.1597 (0.3052)
Vmin (v=0.5) —0.1926 (0.9036)
Umax (£ =0.5) 0.1599 (0.7801)
Umin (x=0.5) —0.1649 (0.1618)
(=9/p* VP)max 0.2640 (0.5837, 0.1539)
(V- D)max 0.2640 (0.5838, 0.1539)
(=9/pVP)min —0.2220 (0.8145, 0.8052)
(VD) pin —0.2220 (0.8145, 0.8052)
Via 0.04522 0.5, 0.5)

max, 0.05713 (0.6739, 0.4311)
Computed values for Ra= 10" and e = 0.6
Right

Nupax 3.282 (0.8497)

Upnin 0.350 0)

Nupig 2.506 0.5)

Nu 2.218 -
Left

Nuypax 3.623 (0.1119)

Upnin 0.758 1))

Nt 2.202 0.5)

Nu 2.218 -
Mid

Numax 13.144 (0.7848)

Nupmin —10.460 (0.1460)

Nu 2.218 -

Ncony 2.056

Nuyise 0.162 -
PP, 0.91463 -
Maax 3620%x 1076 (0.9365, 0.4211)
Vmax (V= 0.5) 0.2688 (0.1666)
Vmin (v =0.5) —0.2863 (0.9270)
Upax (£ =0.5) 0.2363 (0.7821)
Unnin (x=0.5) —0.1948 (0.1444)
(=9/p* VP)max 0.3945 (0.2080, 0.1396)
(V' D)max 0.3945 (0.2080, 0.1397)
(=9/pVP)min —0.3001 (0.8938, 0.8363)
(V*D)min —0.3001 (0.8938, 0.8364)
Void 0.06472 0.5, 0.5)

0.07060 (0.6229, 0.4013)

max,

(continued)
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Table III.

Variable Value Position
Computed values for Ra= 10° and e = 0.6
Right
Numax 6.933 (0.9314)
Nuppin 0.515 )
Numiq 4.740 0.5)
Nu 4.480 -
Left
Nuyax 8.641 (0.0754)
Nupin 0.848 1)
Nupia 4.203 0.5)
Nu 4.480 -
Mid
Nunax 33.65 (0.8375)
Npin —19.10 (0.1394)
Nu 4.480 -
Nucony 4474 -
Nuyise 0.006 -
pIP, 0.92196 -
Maax 1.174x 107° (0.9632, 0.3644)
Vmax (¥ =0.5) 0.3166 (0.0948)
Vmin (= 0.5) —0.2939 (0.9578)
Umax (X =0.5) 0.1946 (0.8364)
Umin (x=0.5) —0.1111 (0.1394)
(=0/p" VP)max 0.6239 (0.0874, 0.0686)
(V- D)max 0.6238 (0.0874, 0.0686)
(—=0/0VP)min —0.4012 (0.9558, 0.9497)
(VD) in —0.4012 (0.9558, 0.9497)
Woid 0.04092 0.5, 0.5)
Winax, 0.04232 (0.3481, 0.5151)
max, 0.04135 (0.7846, 0.3349)
Computed values for Ra= 10° and e = 0.6
Right
Nupax 15519 (0.9676)
NUmin 0.758 0)
Nt 8.637 0.5)
Nu 8.687 -
Left
Nuypax 20.270 (0.0365)
Nupin 1.067 1)
Nuyig 7.459 0.5)
Nu 8.687 -
Mid
NUax 65.23 (0.8544)
NUpmin —43.56 (0.0905)

(continued)




Variable Value Position
Nu 8.687 -
Nueony 8.690 -

Uyise —0.004 -

PIP, 0.92449 -

Ma,ax 3720x 10°° (0.9792, 0.3787)

Vmax (= 0.5) 0.3203 (0.0537)

Vmin (= 0.5) —0.3001 (0.9756)

Umax (£ =0.5) 0.1193 (0.8541)

Umin (x=0.5) —0.07972 (0.0905)

(=0/p" VP)max 1.0394 (0.0384, 0.0303)

(V- D)max 1.0393 (0.0384, 0.0303)

(—0/pVP)min —0.6086 (0.9794, 0.9762)

(VD) min —0.6086 (0.9794, 0.9762)

S 0.02209 0.5, 0.5)
max, 0.02351 (0.8688, 0.3926)
ma, 0.02312 (0.2081, 0.6477)

0.02126 (0.8880, 0.1458)

max;

Computed values for Ra= 107 and e = 0.6

Right
Ntpax
Numin
&m id
Nu

Left
Nupmax
Numin
Nupig
Nu
Mid
Nupax
Mmin
Nu
&conv
Uyisc
DIPy
Mayax
Umax (= 0.5)
Umin (y=0.5)
Umax (¥ = 0.5)
Umin (x = 05)
(_5_/p “VP)max
(V" V)max
(_5_( PVP)min
(V' 0)min

34.269

1.089
15.512
16.240

46.379

1.454
13.188
16.241

129.35

— 8843
16.241
16.205
0.036

0.92263
1.175x 104
0.3229

—0.3011
0.07490

—0.05124
1.7061
1.7058

—0.9051

—0.9052

(0.9848)
©)
(0.5)

(0.0164)
)
(0.5)

(0.8260)
(0.0693)

0. 9883 0.3754)

(

©.

©.

©.

(0.0693)

(0.0172, 0.0134)

(0.0172, 0.0134)

(0.9903, 0.9888)

(0.9903, 0.9888)
(continued)
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Table III.

Variable Value Position
Woid 0.01265 0.5, 0.5)

Winax, 0.01315 (0.0989, 0.5016)
W ax, 0.01211 (0.1639, 0.8211)
WV inax, 0.01282 (0.2798, 0.4556)
Winax, —0.00013 (0.8009, 0.0419)
Wi, 0.01288 (0.8040, 0.4301)
W inax, 0.00922 (0.8807, 0.1765)
Winax, 0.01104 (0.9207, 0.0793)
v 0.01324 (0.9256, 0.3909)

Computed values for Ra= 10° and & = 0.01

Right
Ntax
Umin
Nupig

Nu

Left

Nupax

Umin

Nupiq

Nu
Mid

Nupax

&min

Nu

Mconv

Nuvisc
pIPy
Mayax
Umax (= 0.5)
Umin (J/ = 05)
Umax (£ = 0.5)
Umin (.76' = 05)
(_T)/p “VP)max
v ;7_})max
(_0/ pr)min
(V ! 7_})min
\Pmid

max,

maxg

17.501
0.977
8.389
8.825

17.571
0.982
8.370
8.825

3251

— 3232
8.825
8.773
0.052

0.99998015

3.189%x 107°

0.3108
—0.3105
0.09158
—0.09106
0.01123
0.01112
—0.01114
—0.01124

0.02308
0.02367
0.02308
0.02368

Computed values for Ra= 10° and e = 0.2

Right
Numax

Umin

16.864
0.927

(0.9608)
©)
0.5)

(0.0392)
@
0.5)

(0.8499)
(0.1500)

(0.9635, 0.5286)
(0.0380)
(0.9625)
(0.8499)
(0.1500)
(0.0325, 0.0315)
(0.0324, 0.0319)
(0.9678, 0.9686)
(0.9677, 0.9690)

(0.5, 0.5)

(0.1507, 0.5461)
(0.5122, 0.5003)
(0.8499, 0.4527)

(0.9619)

0

(continued)




Variable Value Position

Nupig 8.536 0.5)

Nu 8.811 -
Left

Nuypax 18.280 (0.0394)

Nupmin 1.019 )]

N 8.154 0.5)

Nu 83811 -
Mid

Nuax 172.10 (0.8504)

Nupin —152.99 (0.1439)

Nu 83811 -

Nucony 8.766 -

Nuyise 0.045 -
DbIP, 0.992009 -
Maypx 3.284%107° (0.9679, 0.4874)
Vmax (y=0.5) 0.3138 (0.04246)
Vmin (v = 0.5) —0.3074 (0.9667)
Upmax (€= 0.5) 0.09773 (0.8504)
Upin (x=0.5) —0.08694 (0.1440)
(=9/p" VP)max 0.2469 (0.0349, 0.0320)
(VD) pax 0.2468 (0.0349, 0.0320)
(=0/pVP)min —0.2096 (0.9708, 0.9700)
(V- D)yin —0.2097 (0.9708, 0.9700)
Wonid 0.02295 0.5, 0.5)
W inax, 0.02354 (0.1570, 0.5365)
WV inax, 0.02308 (0.6366, 0.4902)
W inax, 0.02373 (0.8555, 0.4385)
Computed values for Ra= 10° and e = 0.4
Right

Nupax 16.208 (0.9642)

Numin 0.857 0)

Nupig 8.627 0.5)

Nu 8.768 -
Left

NUpax 19.166 (0.0385)

Nupmin 1.048 )]

Nupia 7.851 0.5)

Nu 8.768 -
Mid

Nuax 91.84 (0.8526)

Nuppin —71.35 (0.1248)

Nu 8.768 -

Nucony 8.743 -

Nuyise 0.025 -

(continued)
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Table III.

Variable Value Position
pIP, 0.96745 -

Mamax 3450% 1073 (0.9731, 0.4387)
Vmax (y=0.5) 0.3170 (0.0477)

Vmin (= 0.5) —0.3040 0.9711)

Umax (X =0.5) 0.1070 (0.8525)

Umin (x=0.5) —0.08322 (0.1248)
(=0/p" VP)max 0.5690 (0.0370, 0.0316)
(VD)max 0.5689 (0.0370, 0.0316)
(=9/pVP)min —0.4054 (0.9746, 0.9724)
(VD) in —0.4055 (0.9746, 0.9724)
Woid 0.02261 0.5, 0.5)

W inax, 0.02335 (0.1658, 0.5319)
Winax, 0.02320 (0.1888, 0.6669)
Winax, 0.02320 (0.1878, 0.6637)
Winax, 0.02369 (0.8616, 0.4187)
W inax, 0.02201 (0.8691, 0.1855)

layer fills the whole domain. For higher Rayleigh number separate boundary
layers on the hot and cold wall can be detected. For low Rayleigh numbers the
stream function shows only one local maximum. For higher Rayleigh numbers
more local maxima are present. The accurate positions of these maxima can be
found in the tables. For the Ra = 107, & = 0.6 case, even a minimum can be
found, corresponding to a counterrotating vortex.

Additional physical discussions on the flow phenomena can be found in
Chenoweth and Paolucci (1986) and Leonardi and Reizes (1981), but are not the
attemption of this benchmark paper.

4. Conclusion

Benchmark solutions for different Ra-numbers and temperature differences e
for the square cavity problem with large temperature differences between the
vertical planes are presented with an accuracy of four up to five digits.

References

Chenoweth, D.R. and Paolucci, S. (1986), “Natural convection in an enclosed vertical air layer with
large horizontal temperature differences”, Journal of Fluid Mechanics, Vol. 169, pp. 173-2105.

Leonardi, E. and Reizes, J.A. (1981), “Convective flows in closed cavities with variable fluid
properties”, in Lewis, R.W., Morgan, K. and Zienkiewicz, O.C. (Eds), Numerical Methods in
Heat Transfer, Wiley, NY, pp. 387-412.

Le Quéré, P. (1991), “Accurate solutions to the square thermally driven cavity at high Rayleigh
number”, Computers Fluids, Vol. 20, pp. 29-41.

Vierendeels, J., Merci, B. and Dick, E. (2001), “Numerical study of natural convective heat transfer
with large temperature differences”, International Journal of Numerical Methods for Heat
and Fluid Flow, Vol. 11, pp. 329-41.

White, EM. (1974), Viscous Fluid Flow, McGraw-Hill, NY ISBN 007-069712-4.



